`

jvm学习笔记

    博客分类:
  • java
阅读更多

Java技术体系

SUN官方定义的java技术体系包括:

1、  java程序设计语言

2、  各种硬件平台上的java虚拟机

3、  Class文件格式

4、  Java API

5、  来自商业机构和开源社区的第三方java类库

我们可以把java程序设计语言、java虚拟机、java API类库这三部分统称为JDKJDK是用于支持java程序开发的最小环境。另外,可以把java API类库中的java SE API子集和java虚拟机这两部分统称为JREJRE是支持java程序运行的标准环境。下表展示了java技术体系所包含的内容,以及JDKJRE所涵盖的范围。

Hotspot Java内存区域与内存溢出异常

对于java程序员来说,在虚拟机自动内存管理机制的帮助下,不再需要为每一个new操作去写配对的delete/free代码,不容易出现内存泄露和内存溢出问题。不过,也正是因为java程序员把内存控制的权利交给了java虚拟机,一旦出现内存泄露和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那么排查错误将会成为一项异常艰难的工作。

运行时数据区域

Java虚拟机在执行java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域都有各自的用途,以及创建和销毁的时间。有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销毁。

根据《java虚拟机规范(Java SE 7版)》的规定,java虚拟机所管理的内存将会包括以下几个运行时数据区域(java虚拟机有很多种,且每种结构都不大一样)

程序计数器

程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在虚拟机的概念模型里(仅是概念模型,各种虚拟机可能会通过一些更高效的的方式去实现),字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令。分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

如果线程正在执行的是一个java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Native方法,这个计数器值则为空。

由于java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

此内存区域是唯一一个在java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。

Java虚拟机栈

Java虚拟机栈(java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机描述的是java方法执行的内存模型:每个方法在执行的同时都会创建一个栈帧(Stack Frame是方法运行时的基础数据结构)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。

局部变量表存放了编译期可知的8大基本数据类型(booleanbytecharshotintlongfloatdouble)、对象引用(reference类型,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其它与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。

其中64位长度的longdouble类型的数据都会占用2个局部变量空间(Slot),其余的数据类型只占用1个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverFlowError异常;如果虚拟机栈可以动态扩展,且扩展时无法申请到足够的内存,就会抛出OutOfMemoryError异常。

本地方法栈

本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行java方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的Native方法服务。在虚拟机规范中对本地方法栈中方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出StackOverFlowErrorOutOfMemoryError异常。

Java

java堆一般是java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。

Java堆是垃圾收集器管理的主要区域。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以java堆中还可以细分为:新生代和老年代;新生代细分为伊甸园、幸存1区、幸存2区。

根据java虚拟机规范的规定,java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx-Xms控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。

新生代(年轻代)

所有新生成的对象首先都是放在新生代。新生代用于存放新创建的对象,存储大小默认为堆大小的1/15-Xmn 可以设置年轻代为固定大小),特点是对象更替速度快,即短时间内产生大量的“死亡对象”。新生代的目标就是尽可能快速的收集掉那些生命周期短的对象。

新生代分三个区。一个Eden区,两个Survivor区(分别叫fromto),默认比例为8:1。一般情况下,新创建的对象都会被分配到Eden(一些大对象特殊处理),这些对象经过第一次Minor GC后,如果仍然存活,将会被移到Survivor区。对象在Survivor区中每熬过一次Minor GC,年龄就会增加1岁,当它的年龄增加到一定程度时,就会被移动到年老代中。

新生代垃圾收集算法是复制算法。复制算法是将可用内存按容量划分为大小相等两块,每次只使用其中的一块,当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉,这样每次都是对整个半区进行内存回收,所以内存分配时也就不用去考虑内存碎片等复杂情况了,不会产生内存碎片。但是这种算法也有一个很明显的缺点,会缩小实际可以使用的内存,这里就直接缩小了一半!

GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。紧接着进行GCEden区中所有存活的对象都会被复制到“To”,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。经过这次GC后,Eden区和From区已经被清空。这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。不管怎样,都会保证名为ToSurvivor区域是空的。Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。

 

年老代

在新生代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

新生代垃圾收集算法是标记整理算法。和标记清除算法一样,该算法有标记过程,但是后面不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

方法区

方法区(Method Area)与java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。

HotSpot虚拟机把方法区称为“永久代”(Permanent Generation),HotSpot虚拟机把GC分代收集扩展至方法区。对于其它虚拟机来说不存在永久代的概念。使用永久代来实现方法区并不是一个好主意,因为这样更容易遇到内存溢出问题(HotSpot虚拟机永久代有-XX:MaxPermSize的上限,而其它虚拟机没有超过可用内存上限就不会出现问题),而且有极少数方法(例如String.intern())会因这个原因导致不同虚拟机下有不同的表现。

Java虚拟机规范对方法区的限制非常宽松,除了和java堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入了方法区就如永久代的名字一样“永久”存在了。这区域的内存回收目标主要是针对常量池的回收和堆类型的卸载,一般来说,这个区域的回收“成绩”比较难以令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收确实是必要的。SUN公司曾出现严重的BUG就是由于低版本的HotSpot虚拟机对此区域未完全回收而导致内存泄露。

根据java虚拟机规范的规定,当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。

持久代(永久代)

见方法区。持久代(Perm Gen)是JDK7中的特性,JDK8后被取消。持久代是JVM方法区的实现方式之一,JDK8起,被元空间(与堆不相连的本地空间)取而代之。持久代存放的是应用元数据(应用中使用的类和方法),持久代中的对象在 Full GC 的时候进行垃圾回收。

运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译器生成的各种字面量和符合引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。

Java虚拟机对Class文件每一部分(包括常量池)的格式有严格规定,每一个字节用于存储哪种数据都必须符合规范上的要求才会被虚拟机认可、装载和执行,但对于运行时常量池,java虚拟机规范没有做任何细节的要求,一般来说,除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。

运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,java语言并不要求常量一定只有编译期才能产生,也就是并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用的比较多的是String.intern()方法。

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是java虚拟机规范中定义的内存区域。但是这部分内存也会被频繁的使用,而且也可能导致OutOfMemoryError异常。

jdk1.4中新加入了NIONew Input/Output)类,引入了一种基于通道(Chanel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在java堆中的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在java堆和Native堆中来回复制数据。

显然,本机直接内存的分配不会受到java堆大小的限制,但是,既然是内存,肯定还是会受到本机总内存大小以及处理器寻址空间的限制。服务器管理员在配置虚拟机参数时,会根据实际内存设置-Xmx等参数信息,但经常忽略直接内存,使得各个内存区域总和大于物理内存限制,从而导致动态扩展时出现OutOfMemoryError异常。

垃圾回收

GC如何判断一个对象为”垃圾”的。

可达性分析算法。通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。在Java语言中,可作为GC Roots的对象包括下面几种:

1、虚拟机栈(栈帧中的本地变量表)中引用的对象。

2、方法区中类静态属性引用的对象。

3、方法区中常量引用的对象。

4、本地方法栈中JNI(即一般说的Native方法)引用的对象。

垃圾回收

Java堆是垃圾收集器管理的主要区域。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以java堆中还可以细分为:新生代和老年代;新生代细分为伊甸园、幸存1区、幸存2区。由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Scavenge GCFull GC

Scavenge GC一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Scavenge GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。

Full GC对整个堆进行整理,包括YoungTenuredPermFull GC因为需要对整个堆进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC

1、年老代(Tenured)被写满。

2、持久代(Perm)被写满。

3System.gc()被显示调用。

4、上一次GC之后Heap的各域分配策略动态变化。

  • 大小: 19.3 KB
  • 大小: 62.4 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics